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1 INTRODUCTION

Modern Air Traffic Control (ATC) systems are dependent on highly reliable
computer based systems. This dependency is increasing with the growing volume
of air traffic, making the control task after a system failure more difficult and
prone to safety problems. Somewhat paradoxically, the addition of extra
functionality to help air traffic Controllers with increased traffic implies even
more reliance on the ATC computer system and, in turn, creates the need for
even higher reliability and availability on new and evolving systems.

The Civil Aviation Authority (CAA) is aware of these problems and to
help it keep abreast of current techniques and methods, and assess their
relevance to current and future projects and plans, it sponsors a research and
development programme in various software engineering topics. Part of this
programme is carried out in the ATC Systems Research Division at RSRE
Malvern, and one item of the Division's work has been an investigation into
software fault tolerance as a means of achieving high reliability.

Fault tolerance is about making use of component or information
redundancy and is one of two approaches to achieving reliability in systems. The
other approach is fault prevention which is concerned with using methods,
techniques and technologies that aim to avoid introducing faults into the
implementation, including removal of faults found during testing. Specifically
software fault tolerance is about using software redundancy to minimise the
effects of software faults on the operational system, however the techniques used
may, in some instances, provide some protection against hardware faults.

The RSRE research programme on software fault tolerance was mapped
out to follow two lines of research:-

1. Study actual applications and existing research,

2. Study the applicability to Air Traffic Control (ATC) systems.

This report provides a summary of the studies into the research and application
of software fault tolerance and considers the implication for ATC systems. The
results of a study contract, initiated as part of the programme on the
applicability of a specific software fault tolerant design technique to an ATC
system, are given in references 124,291.

1.1 Structure of Report

Chapter 2 provides an introduction to software fault tolerance, setting out the
main principles and terminology. The two basic schemes introduced in this
chapter, N-version programming (NVP) and recovery blocks (RB), are described
in more depth in chapter 3. A description of the recent research and the results
of several of the leading research projects are presented in chapter 4 .This is
followed by an account of some important applications in chapter 5, and a brief
discussion on the important subject of cost-effectiveness in chapter 6. The final
chapter gives a quick summary of the status of software fault tolerance, and
highlights some of the key issues relevant to ATC systems.
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2 OVERVIEW OF SOFTWARE FAULT
TOLERANCE

2.1 Introduction

Fault tolerance and fault prevention are two complementary approaches to
achieving reliability in systems:

Fault prevention is concerned with using methods, techniques and
technologies that aim to avoid introducing faults into the implementation. It
involves two aspects referred to as fault avoidance and fault removal. Fault
avoidance tries to exclude faults by use of the appropriate design and
construction methods; examples of its use are the selection of reliable
components and the adoption of good design methods. Fault removal attempts
to locate and remove as many faults as possible by extensive testing, validation
and verification.

Fault prevention may not provide the required reliability and it may be
necessary to construct systems, usually involving redundant components, that
tolerate faults and hence prevent system failure. Fault tolerance schemes require
a combination of some or all of the activities of error detection, damage
confinement, error recovery, and fault removal to reach the required reliability.
Such schemes are well established in hardware systems where the physical nature
and failure statistics of transients and component ageing are sufficiently
understood that reliability predictions can usually be made with some confidence.
In contrast, a software fault is either present or not present. Thus software does
not have transients or wear out in the hardware sense; however, software faults
may manifest themselves as errors in a computer system in such a way that the
errors have characteristics similar to hardware failures (for example 112] describes
an ageing characteristic due to maintenance). Thus software fault tolerance is
about using design redundancy to minimise the effects of software faults.

The remainder of this chapter gives a brief description of the principal
features of fault tolerance and the two main schemes for software fault tolerance:
Chapter 3 give more details on on these two schemes.

2.2 Principles

Further discussion of software fault tolerance needs to be based on a coherent
model of computer system failure. The model commonly used (24,26,22,11 is one
in which a computer system is considered to consist of a set of hardware and
software components interacting under the control of a design. A component of a
system is also a system , so that a hierarchical decomposition of a computer
system can be performed until all components are 'atomic', i.,.. the internal
structure of the component is no longer of interest, and can be ignored. In
operation a computer system will move through a sequence of internal states as
represented by the values of such items as bus-voltage levels or data base
variables. During normal operation a physical component fault may occur, or a
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residual hardware or software fault may be encountered. This may lead to an
error in the system state which in turn can result in a system deviating from its
specification which causes a system failure. This chain of causality is depicted in
the diagram below.

Physical Hardware Software
component design design

fault fault fault
\ /
\ /

\ /

error in system state

failure in system

SYSTEM FAILURE MODEL

The model considers all software errors to be design faults. The
reasoning, reference [1]pp57 behind this is that the failure of a component is
attributable either to a design fault in the component or to a failure of a
sub-component. The same reasoning can be applied to sub-component failure
until eventually the component failure is traced either to a design fault, or to the
selection of a faulty sub-component which itself is considered a design fault. The
model also begs the issue of obtaining an authoritative specification by which a
deficiency can be judged to be a system error or not, and for this report the
existence of such a specification is assumed.

If fault tolerance is to be effective it will be necessary to construct the
hardware and software system in such a way that a fault is prevented from
causing a system failure. To do this, there will usually be some form of error
detection, damage assessment and containment, error recovery and return to
system service. It will also be desirable to attempt to identify the fault, remove
it, and return the corrected component to the operational system.

2.3 Conceptual model
At a conceptual level the basic structure for software fault tolerance is shown in
the diagram below in which the modules are different implementations of the
same specification. The objective is to produce modules that do not fail on the
same set of input data through a fault common to the different modules. This
failure independency is difficult to ensure and the use of diverse development, for
example separate teams with different design methods and different languages, is
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adopted in an attempt to achieve it. The adjudicator makes decisions about the
results obtained from execution of the modules.

I I
-->I(primary) I ----
/ I module0 I

/\
/ " \I I-......> "-. - - adjudicatori---- >

/ I

\' /
I I /

-->I module n I---
I I

SOFTWARE FAULT TOLERANCE SCHEMATIC

Probably the most obvious interpretation of this diagram is the one
which is directly analogous to the hardware technique of N-modular redundancy
(NMR) and is known as N-version programming. In this scheme the
modules, usually referred to as versions, are executed concurrently and the
adjudicator in its simplest form is a majority voter. As in the hardware
analogue, the modules must be atomic in the sense they must not interact with
one another. In terms of the failure model, error indication is provided by the
voter, damage assessment is achieved by atomicity of the modules, error recovery
by ignoring outputs from modules identified as faulty by the voter.

The other main interpretation is the recovery block scheme in which
the modules, usually referred to as alternates, are executed serially, starting with
the primary module, until a module passes the acceptance test that is embodied
in the adjudicator. To ensure alternate modules can execute from the same
consistent state as the primary module, the system state is stored on entry to a
recovery block (i.e. before executing the primary module), and restored before
an alternate module is executed. Error detection is provided by the acceptance
test, damage assessment is achieved by backward recovery, error recovery is
obtained by state restoration and execution of an alternate module.

A 'module' is frequently referred to as a 'version' or an 'alternate'.

. . . . ........ . . ... .. . . _ i _ -- • ' - n l l



2.3.1 Nesting and concurrent systems

Nesting of the basic fault-tolerance schemes can be applied to hierarchically
decomposed sequential systems. However, in a system of concurrent interacting
processes, recovery has to be coordinated because state restoration after a
module failure must continue until a consistent state is available to all other
processes that had been involved in interactions with the faulty module: in the
limit this could be back to the initial system state.
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3 IMPLEMENTATION ISSUES

The implementation issues for the two main software fault tolerance schemes are
examined. The schemes are compared and other schemes are discussed briefly.

3.1 N-Version programming

Implementation of the N-version scheme requires an underlying machine which is
responsible for:

1. invoking each of the versions with identical data sets,

2. ensuring the versions execute to completion or are timed-out,

3. invoking the adjudicator with the outputs from the versions,

4. responding to the results from the adjudicator and initiating the next cycle
of fault-tolerant processing.

Independent execution of the versions may be ensured by using separate
hardware processors for each version. This approach can result in a heavy
demand for resources if N-version programs are nested within each other to any
extent. It is also possible to perform pseudo parallel independent execution on a
single processor. Versions can retain private data, such as local state variables,
between successive calls and this in itself can increase diversity, although there is
a danger of cumulative effects leading to versions being detected as faulty and
hence decreasing the system reliability.

It is usually stated that the inputs to each version must be identical;
however in some systems, for example one with sensors providing slowly
changing data values, it may be possible to increase diversity by feeding data
from adjacent time slots into the different program versions : careful design of
the adjudicator will be needed.

In a real system it will be essential to provide a time-out mechanism to
avoid having the adjudicator 'hung-up' for a version that is unable to complete in
time, for example because it is in infinite loop. There must also be a means of
informing the adjudicator when a version is unable to complete properly due to
an exception internal to the version such as a divide by zero. The task of
adjudicator is to identify a consensus on the outputs of the versions and the
system designer must decide what actions are required if it is unable to do this.

For some systems where input data is not critical and is refreshed frequently it
may be possible to ignore the occasional consensus failure. Safety critical
systems may prefer to revert to some form of manual control.

3.2 Recovery blocks

A single recovery block consists of a primary module (0th alternate), standby
alternates (I to n), and an acceptance test. Execution of a recovery block
requires the following steps to be carried out:
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1. establish recovery point - save state,

2. execute the primary module,

3. pass the outputs from the module to the adjudicator,

4. if acceptance test of adjudicator succeeds, discard recovery point and exit,

5. if acceptance test fails and a next alternate module is available then restore
system state to that at the recovery point, execute alternate module and
repeat from step 3.

6. no more alternates, fail.

Establishing a recovery point can be thought of as a note to inform the
underlying operating system that there may be a requirement in the future that
will need the system state to be restored to that which exists at this recovery
point. Since the primary module is the only module that is always executed, the
standby alternates should not retain data between calls of the recovery block.

Because the primary module is always executed, it is usually the
module with the most desirable characteristics. For example in surveillance radar
tracking it might be appropriate to use a full Kalman filter for the primary
module, a simple alpha-beta filter for the first alternate and a dead reckoning
algorithm for the third alternate. Alternate modules can also be independently
designed versions produced from the same specification as occurs in N-version
programming. Indeed it should be possible to design an adjudicator to effect the
N-version fault tolerance scheme. Another, potentially very important, way of
using recovery blocks is to let the alternate modules be earlier versions of a
program and the primary module the newly released enhancement. This
approach could enable automatic reversion to an older trusted version if the new
release fails the acceptance test.

It is desirable to have timeout and exception mechanisms in operation
so that the adjudicator can be invoked when a module cannot execute in its
allotted time or cannot handle an exception internally. In such cases the action
of the recovery block would be to execute the next alternate, if available, after
restoring the state to the recovery point. As originally conceived, the acceptance
test, as its name implies, was not intended to guarantee complete correctness,
but was meant to check on the acceptability of the results produced by a module.
However it is a critical component of a recovery block and must be extremely
reliable if it is not to have a significant effect on the overall reliability of the
recovery block scheme. Consequently consideration is being given to adopting a
correctness test as one form of adjudicator. In view of the high reliability
required for acceptance tests it is sensible to aim for programs that are short and
simple, and that are smaller than the modules that are intended to be checked.

3.2.1 System structure

In sequential programs nesting of recovery blocks presents no difficulty: each
alternate can itself be a recovery block if desired (example structures are given in
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126]). In a system of concurrent interacting processes, recovery presents a
problem because recovery of a process will normally include recovery of its
interprocess communication data which in turn may force processes that have
used or are using this data to recover. This backward recovery will need to
continue until a consistent state is reached, and unless recovery is coordinated
properly, a "domino" effect is likely and extensive restoration, even back to the
initial system state, may occur. Particularly in a real time system such
uncoordinated recovery is unacceptable.

The general solution to the domino effect is to establish suitable sets of
recovery points so that if one of the interacting process raises an exception,
backward error recovery can be provided by state restoration back to the
appropriate consistent set of recovery points. The time sequence diagram below
illustrates the concept for three processes, P1, P2 and P3. Intercommunication is
shown by vertical lines and recovery points are labelled with unprimed lower case
letters. Priming is used to indicate discarding of recovery points.

e a a'

--------- --------------- ------- -> Pt

d b I I b'
------------------------------ > P2

c [
--------------------------- P3

time --> T

RECOVERY LINES and RESTORABLE ATOMIC ACTIONS

At time T a failure of process P1 or P2 will require restoration to the recovery
points (c,d,e): note recovery points (a,b) have been discarded. Recovery of
process P3 is required in the restoration because there is an interaction between
P; and P3 since the last available recovery point. The line joining points (c,d,e)
is called a recovery line.

To minimise rollback, it is apparent that a recovery line should contain
as few recovery points as possible, and these should have been established as
recently as possible. In order to determine a recovery line which at least
approximates to these conditions, two approache3 are possible - planned and
unplanned. The unplanned approach requires the recovery mechanisms to
monitor interprocess communications and maintain a record of information flow
so that a search for a recovery line can be made when a process raises an
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exception. A planned approach requires the system designer to use his knowledge
about the particular system to place recovery lines.

The attraction of the unplanned approach is that no restrictions are
placed on the processes. However, a complex recovery mechanism is required and
there is a risk of severe loss of system facilities during recovery which is beyond
the control of the designer. For these reasons the planned approach is preferred.

Of the possible strategies 11) for planned recovery those based on atomic

actions are appropriate for structuring system activity. In this context a
restorable (atomic) action is defined as providing a recovery line for a set of
processes which are communicating only among themselves. Processes leave the
restorable action simultaneously and the recovery line is discarded. An example
of a restorable action containing processes P1 and P2 is depicted by a closed line
through the points (a,b,a',b').

When the restorable action contains a recovery block spanning two or
more mutually interacting processes it is called a 'conversation' )261.

The concepts of backward recovery in a system of intercommunicating
processes have close analagies with the recovery of transactions in data systems
[I]J. A scheme for providing coordinated recovery in a MASCOT 120) based
system has been developed [2,251 in which a common recovery point is provided
for predefined subsets of concurrent processes (activities) and their
intercommunicating data areas (IDA). These predefined subsets of activities and
IDAs are called 'dialogues' and are essentially a MASCOT specific version of the
generalized 'conversation' principle proposed in 1261. Thus activities executing
within a dialogue are constrained to access only those IDAs which are associated
with that particular dialogue.

In order to support the software fault tolerance scheme described above,
the MASCOT (virtual) machine must be extended to provide recovery blocks
and MASCOT construction and run-time facilities for dialogues 1251.

Forward recovery is a means of providing a consistent state without
state restoration. In particular, forward recovery mechanisms will be needed at
the interface between recoverable and non-recoverable subsystems 11,21. The
form of these mechanisms is very much dependent on the application and can be
difficult to design. Often the interfaces itivolved are essentially message passing
systems with only a single activity accessing each side of the interface channel,
and in such cases, simply clearing the channel may be sufficient for forward
recovery. Some research work on forward recovery of failed versions in N-version
programming is reported in 133).

3.3 Comparison of NVP AND RB

N-version programming is generally the preferred scheme in situations where
replicated hardware can be used for concurrent execution of versions and voting
schemes can be easily implemented. Voting can be problematic where real
numbers, derived from different algorithms, are to be compared, and may be
impossible in the cases where comparison of multiple correct solutions would be
needed. Examples of such difficulties are given in chapter 7. N-version

10
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programming is also appropriate where versions need to retain data between
calls. Where hardware is limited and voting checks are inappropriate then the
recovery block scheme is indicated. In particular, the recovery block approach
seems more suitable where alternate versions represent decreasing complexity
and degraded functionality: n-version programming schemes tend to assume
identical or near identical functionality of the versions in order to simplify
voting. On performance grounds the recovery block scheme seems to be at a

disadvantage because of the overheads that would be involved in using normal
computer techniques to implement the backward recovery mechanisms. However,
as pointed out in 4.4, there are practical hardware based solutions that appear to
overcome the problem. Another less obvious problem with recovery blocks is that
suitable acceptance tests are difficult to derive.

3.4 Other Schemes

Laprie proposes a scheme which he calls N self-checking programming [171.
The scheme is about executing 'hot' spares in parallel. Each spare is a
self-checking component, and each component is either a version with an
acceptance test or two versions with a comparator test. Fault tolerance for the
failed service-providing component is obtained by switching to a component that
:,as passed its test. Such a scheme corresponds closely to those adopted in the
Airbus and Boeing flight control computers discussed later.

A mixture of the N-version and the recovery blocks ideas is proposed in
1281 called consensus recovery. The consensus recovery scheme can be
considered to be N-version programming which is followed by a recovery block if
there is no agreement in the N-version voter. More precisely, all versions execute
and submit their outputs to a voting procedure. If there is agreement the output
is accepted; if there is no agreement then the outputs of the versions are
examined in turn by an acceptance test until one output is accepted. Note that
although there is no requirement for state recovery since all versions execute in
parallel, there is a requirement to store all outputs.

3.5 Development of Independent Versions

The success of software fault tolerance depends upon the ability to provide
versions of a program which are functionally equivalent but do not contain
common design faults. More precisely, the different versions should fail
independently, and the occurence of correlated failures should be sufficiently low
that the reliability gain offered by software fault tolerance is not significantly
impaired. The accepted methods for producing independent versions are outlined
in this section, and the extent to which this can be achieved is discussed further
in chapters 4 and 6.

The production of independent versions starts with a Customer
requirement specification. Independent development teams, preferably using
different development methods and tools, and aiming possibly for different target
computers, work from this common specification. A monitoring authority is

11



desirable to add impartiality, and to check and encourage the use of different
development techniques; for example to ensure the use of different algorithms
where possible.

The software produced by each team must be tested before release.
Various testing techniques are possible [311. Those relying on a knowledge of the
internal structure of the software are referred to as "white-box" testing, and
include generation and application of test cases, static analysis, manual
inspection such as structured walkthroughs, and mathematical proof of
correctness. Testing without internal knowledge of the internal structure is
referred to as "black-box" testing, and includes the use of randomly generated
inputs, and inputs simulated as representative of the intended user environment.

Use of test teams, separate from the development teams, is often
advocated since they provide a different view of the problem and are more likely
to detect faults. On the other hand, there is an argument that the original
developer knows more about the design and structure of the software and is in a
better position to design effective tests. No clear cut advantage of either
approach has been demonstrated.

Once an an acceptable level of debugging has been achieved, the
versions can be submitted to a customer acceptance test. Versions passing this
test are compared in an N-version programming scheme with a comparator
which is looking for any difference in the outputs for each set of common input
data. This procedure compares each version against every other version and is
commonly called "back-to-back" testing. Any discrepancies must be investigated
and, if necessary, returned for repair and re-submitted to the testing cycle.

12



4 RESEARCH

4.1 Introduction

Research relating to software fault tolerance is carried out in several universities
including Newcastle in the UK, and the Universities of California (UCLA),
Illinois, North Carolina State and Virginia in the USA. NASA has supported
much of the research. A number of industrial companies have also been active
and more recently the electric and nuclear establishments have been making
contributions. For convenience the research is described under the headings of
reliability modelling, empirical evaluations of diverse software, and system
simulations. While it is clearly not possible to discuss all the research work it is
believed the main results and trends are represented.

4.2 Reliability Modelling

Important yardsticks for the credibility of software fault tolerance techniques are
the predicted and measured increase in reliability. These quantities have been
studied using statistical modelling techniques supported with some limited
experimental verification. The application of the models require some means of
assigning probabilities of failures of the various software components used in the
particular fault tolerant scheme under consideration.

A naive model for 3-version programming system with a majority voter
demonstrates the principles. Here an execution of the system can be considered
to fail when one of the three error conditions hold:

1. all three outputs disagree

2. two outputs agree but they are incorrect

3. the voter is in error.

Assume for simplicity that the voter is never in error and simultaneous incorrect
outputs are never equal, then the probability of the latter two error conditions
occuring is zero. The overall probability is then the probability of at least two
versions containing an error, and assuming the versions fail independently this is

pl.p2.p3 + (I - pl).p2.p3 + p1.(l - p2).p3 + pl.p2.(1 - p3)

where pl,p2,p3 are the individual failure probabilities of the three

versions. If it is further assumed that individual probabilities are equal to p then
the expression for the 3-version error probability reduces to one familiar in
hardware triple modular redundancy calculations

3.p2 - 2.p3

It is instructive to compare the reliability of a single execution of the
3-version system with that of a single component, i.e.

13



1 - (3.p - 2.ps)

with
1-p

For unreliable components with values of p greater than 0.5 the

reliability of a single component is better than the 3-version programming
system. This is a somewhat unfair comparison since all errors would be flagged
by the voter in the 3-version programming, and in effect any results passed by
the voter are correct: the fault tolerance has a 100% coverage.

Recovery block modelling tends to be more complicated than that for
n-version programming because the acceptance test will be more complex than a
straight voter and because the recovery mechanism may not be immune to
errors. A simple reliability model for a two versions (a primary and one alternate
module) recovery block system involves the following error possibilities:

1. the acceptance test accepts incorrect results from the primary

2. the acceptance test rejects the correct results from the alternate

3. unsuccessful recovery

4. the acceptance test accepts incorrect results from the alternate.

5. the acceptance test correctly rejects incorrect results from the alternate.

As in the preceeding example it is assumed that versions are independent and
have a probability 'p' of incorrect execution. Further simplifications are possible
by assuming recovery is perfect and that the probability of accepting an
incorrect result is the same as the probability of rejecting a correct result,
namely 'q'. The overall reliability can be shown [28] to be:

1 - (p + q)(p + q - 3pq) - pq(1 + 2pq)

For a perfect acceptance test (q=O), the reliability is 1 - pI which is
better than the simple 3-version result given above for all values of p. However
for a poor acceptance test, say q=0.5, then reliability is much worse than the
3-version results (except for very unreliable versions with p greater than about
0.7). For totally correct versions (p=0), the reliability is 1 - q2 which shows the
importance of having reliable acceptance tests (q small). If highly reliable
recovery block software is required then the criteria of 'acceptability' rather than
'correctness' of test, as emphasised in early research work, is in doubt. Similar
concern about the quality of acceptance tests has been expressed in a more
detailed analysis involving nested recovery blocks 1221.

The simple reliability models described can be extended to include more
realism, particularly in regard to removing the assumption about independency

14



between versions. Scott 128] gives reliability formulae for models of differing
complexity not only for recovery blocks and N-version programming but for the
mixed scheme called consensus recovery block (the name is not really appropriate
since no state recovery is involved). The reference also reports an experiment to
validate the models. In the experiment, the reliability of 16 versions of a parcel
delivery management system, independently programmed in Pascal by computer
science undergraduates, was assessed using 50 test inputs. The programs were
then arranged randomly into 50 groups, with three different versions in each
group. Each group was considered as a fault tolerant system whose reliability
could be predicted using the assessed reliability of the individual programs. The
predicted reliabilities were compared with the observed reliabilities obtained by
applying a different set of 50 tests inputs to each fault tolerant group.

The resulting statistical analysis validated those recovery block and
consensus recovery block models that allowed for failure dependence of versions.
The dependence appeared to be connected with complexity - "if one program
found a particular test case difficult and gave the wrong answer, then the
probability was a nonzero that other programs also had trouble finding a correct
answer, even though the programs used different algorithms". None of the
models for N-version programming were satisfactory because it was possible to
have different correct answers to a given set of inputs. In these situations simple
majority voting is not appropriate since the reliability of the fault tolerant
system is likely to be less than that of a single version.

Dependence in program versions leads to common mode errors and
reduces the reliability that a fault tolerant system would otherwise have.

4.3 Empirical evaluations

Independent failure of program versions is crucial if software fault tolerance is to
be effective. There have been a few serious attempts to develop and measure
failure probabilities of diverse software.

4.3.1 Multi-version Launch Interceptor Program

The best known experiments (151 are probably those based on a Launch
Interceptor Program (LIP). This program receives radar data and decides
whether an object is a threat and hence requests for an interceptor launch. The
program originated in TRW company study, passed through the Boeing company
to the Research Triangle Institute (RTI), reference 181, and then to the
Universities of Virginia and California. The specification from RTI was rewritten
to remove ambiguities and other problems that had been previously encountered.
Twenty seven versions (averaging about lk lines of code) were developed by
students working independently using one of two Pascal compilers. Each
program was tested by the students and subjected to independent acceptance
tests to ensure high reliability before being used in the N-version experiment.

The failure probability of each program was measured by executing
each program with one million randomly generated test cases and counting the
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number of executions where the outputs were different from those of a "gold"
version of the interceptor program that had been subjected to extensive analysis
and testing. While the number of errors found in each version varied widely from
0 to 9656, i.e. error probabilities from zero to 0.009656, the errors in all versions
could be traced to only 45 faults. The average error probability was 0.000698.

Independency of failure was checked by counting, for each test case,
how many versions failed. This enabled the measured probability of more than
one version failing to be compared with that predicted on the basis of
independent failure (using the measured failure probabilities of the individual
versions). A statistical test clearly rejected the hypothesis that (these) programs
fail independently.

To see what effect this failure dependency would have on N-version
systems, further trials were set up to measure the failure probabilities of
2-version and 3-version programs using the 27 versions already developed 15). In
the 2-version experiment all 351 combinations of 2 difterent versions were each
subjected to a million tests and a failure was counted if the output of both
versions in a combination did not agree with the output of the "gold" version.
The average failure probability of all 351 systems was 0.001384 compared with
the average of 0.000698 for individual programs. This has to be interpreted with
care because in an actual use, those error situations where the outputs from the
two versions differ would be detected whereas of course there is no error
detection as such in executing a single version. In this experiment it was found
more 99% of errors were detected so the average probability of an error, ignoring
the detected errors, for a 2-version system is about 0.000014.

A similar experiment was carried out for 3-version programming using
all 2925 combinations of 3 different versions with failures being counted if 2 or
three versions disagreed with the "gold" standard. The average failure
probability was found to be 0.0000367 which is three orders of magnitude greater
than would have been expected had the individual programs failed
independently. Error detection was relatively poor in that only 65% were
detected, 35% having 2 or more versions agreeing on the wrong result.

Further experiments to investigate adding acceptance tests to 8 of 27 of
the launch interceptor programs are reported in 171. Eight groups (3 per group)
of students, working independently, were given a week to add error detection
software to one of the program versions. The types of tests added were mainly
duplication of functionality using mainly different algorithms from the original
code, structural checks such as verifying the correct use of data structures,
reversal checks where the "inputs" were produced from the outputs by reversing
the operations involved, and consistency checks such as range checking (chapter
5 of 111). The first series of tests were based purely on the LIP specification. The
students were then required to read the program code and embed test software;
they were also asked to note faults detected during te reading. Application or
200 randomly generated test cases resulted in just over half of the 26 known
faults being detected. 20% were found by the specification based tests, 40% by
code reading and 40% by the code based test. Six of the detected faults had not
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been previously known. Great differences in individual ability to design effective
test programs was noted.

4.3.2 The PODS experiment

The European nuclear industry have shown an interest in the potential of diverse
software in a collaborative project [5] called PODS (Project on diverse software)
to provide insight into questions concerning the cost effectiveness of diverse
software. The participants in the project were the Safety and Reliability
Directorate (SRD) and the Central Electricity Research Laboratory (CERL) in
England, the Technical Research Centre of Finland (VTT), and the Halden
Reactor Project (HRP) in Norway. SRD acted as the customer, producing a
customer specification for a reactor over-power (trip) system. The other bodies
took on the role of manufacturers, independently implementing their own version
of software to meet the customer specification.

The CERL team worked informally on the specification, while other
development teams translated the specification into a formal specification
language (X-SPEC). The UK and Finnish teams coded in FORTRAN77 while
the Norwegian used assembly.

All three versions were submitted to a common set of acceptance tests
consisting of systematic and random tests. After acceptance testing, extensive

back-to-back testing was used to locate residual faults. In this testing, the
outputs of the programs were compared for some 600k test cases and any
disagreements used to initiate fault diagnosis. Faults were removed and the
offending program returned to the back-to-back testing provided the acceptance

tests were passed.
Only seven faults were discovered during back-to-back testing; six were

related to ambiguous or incorrect customer specification and one to the formal
specification. Two of the faults were found to result in common mode errors in
the HRP and VTT versions. No faults were traced to the implementation phase,
apart from two faults introduced when making corrections for the specification
related errors.

The cost of a single development was nearly 1000 hours compared with
the threefold diversity cost of nearly 2300 - this excluded the back-to-back
testing since that was considered to be part of the operational usage.

The three programs have been subjected to further analysis and test
methods in a follow up project [61 called STEM (Software Test and Evaluation
Methodologies). Of particular relevance was the analysis of failure independence
of particular versions of the CERL and VTT programs. These were known to
contain 15 and 13 faults respectively, i.e. 195 fault pairs to consider. It was
found about 80% of the fault pairs gave rise to independent or ,aearly
independent failures. Nearly 15% resulted in simultaneous failures, and 5% never
gave rise to simultaneous failure.
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4.4 System Simulation

The experimental work discussed above has been largely concerned with the
failure rates of independently developed programs particularly in connection
with N-version programming. A more system orientated project [2,3] was set up
at Newcastle University in 1981 to evaluate the cost-effectiveness of the recovery
blocks scheme by building a naval command and control simulator. The
command and control function took its input from simulated radar, sonar and
inertial navigation systems. An operator interacted with the generated labelled
radar display which enabled him to control helicopter attacks on a hostile
submarine. The command and control function consisted of about 8000 lines of
Coral code, structured into 14 concurrent activities.

The recovery block structure used was the 'dialogue' form in a
MASCOT environment. The MASCOT executive which supports and controls
pseudo concurrent processes and their interactions was modified and extended to
provide recovery block facilities. The recovery mechanisms utilized a specially

designed hardware recovery cache to enable state storage and restoration to be
be performed rapidly.

Three main phases of experiment took place with 60 runs in each phase.
Each run was automatically monitored and observed by an operator and each
time an error was detected, an attempt was made to identify the fault which
caused the error. The run would continue until the scenario was completed or a
failure prevented the run from continuing. Two problems arose in the
experiment, namely the unrepeatability of the runs and the prototypical nature
of the recovery mechanisms. By the very nature of the project little could done
about the first problem, but recovery mechanisms were improved for phase two
and further for phase three. Phase one seemed to be very much an exploratory
phase, verifying the recovery mechanisms and providing initial failure
measurements. Phase two used the same command and control software as phase
one with corrected recovery software. In phase three some of alternates in the
recovery blocks were replaced by versions written by inexperienced programmers.

The principal measure of effectiveness of software fault tolerance was
failure coverage, i.e. the ratio of successful failure recoveries to potential failures

(successful + unsuccessful) recoveries. This came out to be 0.68, 0.53 and 0.81
for the three phases, giving an average of about 67%. A slightly higher average
of 72% is obtained if failures due to imperfect recovery are ignored.

The mean time between failures, is quoted as 0.74hr for the
fault-tolerant system against the 0.31hr for the nonfault-tolerant system.
However, as pointed out by the researchers, these figures are on the low side
because the simulations were run in "fast" mode during periods of relative
inactivity.

It was estimated that an extra 60% of applic.tion software was needed

for the acceptance tests and alternate modules. System overheads were measured
as 33% extra code, 35% extra memory, and 40% additional run-time.

The similarities of a naval command and control system to a
computerized ATC system stimulated an interest in the possibility of using
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software fault tolerance techniques for ATC. This led to the ATC Systems
Research Division at RSRE initiating a study 129] on the applicability of
recovery blocks to ATC with former participants in the Newcastle simulation: a
contract being formally placed by CAA with RMCS who subcontracted some
work to MARl. This study 124) produced a high level MASCOT-based design of
the tracking and flight plan processing parts of London Air Traffic Control
Centre (LATCC), and a detailed design of the tracking system with the fau!t
tolerant features of the dialogue recovery blocks. The increase in size of the
application pseudo-code for the fault tolerance design was about 40% although,
as with Newcastle work, this is very dependent on the number and sizes of the
alternates and the acceptance tests. Some minor refinements to the dialogue
scheme were made during the study.

It was not possible within the scope of the study to address
cost-effectiveness and to help provide such information a proposal to build a
large demonstrator with hardware support for recovery has been made to Esprit
b, a consortium being led by MARI.

4.5 Research facilities

A number of experimental facilities to support the evaluation of software fault
tolerance have been developed. One is the NASA Langley Research Center's
AIRLAB facility in which developing assessment and validation techniques for
fault-tolerant systems is a major objective. Another is a testbed for software
DEsign DIversity eXperiments, DEDIX, at UCLA [4,34]), support by FAA with
a NASA contract. Reference [381 reports a FORTRAN 77 package that
implements advanced reliability modelling techniques called HARP (Hybrid
Automated Reliability Predictor). This is sponsored by NASA and is under
development at Duke University. It is being used to analyse both hardware and
software fault-tolerant computing systems [30].
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5 APPLICATIONS in Operational Systems

The number of systems reported to be making use of diverse software for fault
tolerance in a major way is rather small. The A310,A320 aircraft are the best
known examples, with the Boeing 757/767 aircraft, the Titan III launcher (121
refers to a backup module for attitude control being incorporated) and Space
Shuttle also frequently referred to in the literature. The use of diverse software
in the Swedish state railways and in a computerized reactor safety shut down
system of a nuclear power generator currently under construction has been
reported 1341. The aerospace applications are described below.

5.1 A310 Airbus

The A310 aircraft uses dissimilar software in the control of flaps and slats
114,21,36]. In this system the flaps and slats control consists of 2 computers and
two sets of hydraulic motors. Each computer consists of two halves - one for flaps
and one for slats. Each half-computer controls its own dedicated hydraulic motor
which drives the flaps (or slats) on both wings. Inputs to the computer are from
pilot's selector and from position sensors on the control surfaces. Within each
half-computer, dual-lane dissimilar processing is employed to give the system
very high integrity.

In order to make the two lanes as independent as possible, different
microprocessors (an Intel 8085 and a Motorola 6800) are used with the software
being produced by seperate design teams. The outputs from the two lanes are
compared by a hardware AND function before being fed to the motor. The
software in each lane also monitors the other lane and in case of failure or
disagreement brakes are applied to freeze the surfaces in their current position.

The design aims for the high integrity requirement and the less
stringent availability requirement are:

Inadvertent deployment of surfaces,
Asymmetric deployment of surfaces,
Slats or flaps no longer operating < 10- 9 per hour
and no warning given to the crew.

Surfaces not operable when < 10- 1 per hour
commanded but failure indicated.

Note that the aircraft can be flown and landed with the surfaces frozen;
but runaway movement of the surfaces, failure with no indication to the pilot, or
asymmetric deployment are dangerous.

The integrity depends on the independence of the software designs and
considerable management effort was expended on ensuring this. The design
teams were kept separate and even used different host computers. A central
committee dealt with problems of interpretation of the (common) requirement
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specification, and monitored the development to ensure that the teams employed
different solutions.

Claimed advantages of dissimilarity include clarification of the
specification, ease of getting certification acceptance, and less need for module
testing because the dual-lane real-time tests provided a stringent testbed. More
software was produced and high order programming languages could be used
without undue concern about compiler errors. Overall, therefore, it was thought
there was no increase in development cost in adopting the dissimilar software
approach.

The technique used does reduce the availability of the system. In this
application this does not matter but in future applications where high
availability is required then the full fault tolerant techniques will need to be
used. Certification was achieved in March 1983 and since then there has been
only one revision of the software (as of Jan 1988). No erroneous deployment of
surfaces had been reported in 750,000 flying hours up to May 1985 [36].

5.2 A320 Airbus

The diverse software in the A310 is primarily aimed at fault detection with
recovery being achieved by manual intervention, either to the standby channel,
or to manual control. The design objective in the A320 is that the computer
based control system should be sufficiently reliable that the reversion to the
limited mechanical backup should be unecessary. The limited mechanical backup
is intended to increase confidence and ease certification [27].

Five computers are used in the control of the roll axis and four of these
are also used for control of the pitch axis. Each computer employs a duplex
processor configuration with 2-version software and includes watchdog timers.
Two types of computer are used, one based on 68000 microprocessors and the
other on 80186 microprocessors. This gives rise to four different versions of
control software.

The computers are arranged into two subsystems, one for the "pilot
side" and one for "co-pilot side". For example, the pitch control of the pilot side
consists of one 68000 and one 80186 based computer. At any one time, only one
computer will be in control with the other in hot standby. It is claimed that the
control system can tolerate complete loss of one side of the control system, and
at least one software fault that leads to shut down of one type of computer.

In meeting the reliability requirement failure rate of 10 - per hour for
the computer control system, software failures are excluded from the calculations.
An airworthiness certificate was obtained recently in France in February 1988.

5.3 Boeing 757/767 and 737 Aircraft

The Boeing 757/767 is equipped with yaw damping that makes use of 2-version
software ([37] and page 91 of [34] ). The Advanced autopilot flight director
system computer architecture for Boeing 737-300 aircraft has also been reported
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to employ diverse software but the extent, if any, to which this used to detect
design errors is not clear from the available reference 135.

5.4 First shuttle orbital flight delay

The flight of the shuttle in 1981 was stopped 20min before scheduled launch
because of a synchronisation failure between the backup computer and the main
computing system [101. The main system consisted of 4 identical computers in
hardware, and software during critical phases. Four were chosen since the failure
of one would still enable effective majority voting with the remaining three. The
backup system consisted of one computer, the same as those used in the main
system, but with software developed by a separate team and structured as
synchronous processes as opposed to the asynchronous approach used in the
main system. When not in control the backup system listens to the input/output
data of the main system not only for checking purposes but to keep itself in a
state of "readiness". The software fault tolerance detection is embodied in the
backup system, and in this instance can be said to have succeeded. The fault was
traced to a problem in the main system software concerned with using different
'clocks' at initialisation, resulting in the backup system noting data 'fetches' at
an unexpected time cycle.
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6 COST-EFFECTIVENESS

The cost effectiveness of software fault tolerance has to some extent to be judged
on the results of the experiments, modelling and applications discussed briefly
above. Scott et al [28] have used the cost model

Cost = A.(1 - R) -
B

where, R is the required reliability (0 < R < 1), B is a constant for
given development process, and A is a constant relating to the complexity of the
software, in the context of their experiments on software failure rates (4.2). The
model is used to show for low programming costs it is more effective to spend
more effort on increasing the reliability of a single version than to use multiple
versions in a fault tolerance scheme. However as programming costs increase the
model indicates fault tolerant schemes become cheaper: Consensus recovery
being cheaper than recovery blocks which in turn is cheaper than N-version
programming.

The recovery block scheme is more sensitive than the consensus scheme
to the reliability of the acceptance tests.

Migneault 123 has put forward a model to relate the amount of testing
and debugging of a software component in removing faults to meet given
reliability requirements.This is then used to relate costs to the overall system
reliability for N-version programming. For a single component the cost of
increasing the reliability by a factor of 10 can result in a 100 times increase in
the testing and debugging, thus indicating that a fault tolerance scheme might
be a more cost effective solution.

The Newcastle recovery block simulations provide one of the few system
measurements in that a 60% increase in application code was required to raise
the MTBF from 0.31hr to 0.74 hr, an increase of only 2.4. Excluding failures due
to imperfect recovery, a 9 times improvement in reliability would have been
obtained. An increase in application code of about 30% was required in the
RMCS study on applying the Newcastle based techniques to the London ATC
system.

Of particular interest to the aircraft certification authorities is the
proposed use of N-version software back-to-back testing in order to reduce the
otherwise considerable costs that would be needed for structural testing ("white
box") for Category Ill autopilot 1181. The reference has some severe criticisms
particular concerned with the ability, or rather lack of it, for back-to-back testing
in detecting common mode faults, noting that LIP experiments found common
failures in up to eight independently developed programs. It also considers FAA
document (RTCA/DO-178A) about the requirements for the development of
airbourne-software is not rigorous enough for safety critical software.
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7 APPLICATIONS in AIR TRAFFIC
CONTROL SYSTEMS

The potential benefits of software fault tolerance to Air Traffic Control systems
are increased operational reliability with the attendant improvements in integrity
and safety. Some protection against the serious malfunctions associated with the
introduction of new software releases is also possible.

Can such benefits be achieved in ATC systems and in a cost-effective
manner? The answer to the first part of the question is a guarded "yes", in that
experiments, such as the Naval command and control simulation described in the
previous chapter, do indicate an an increased reliability. The answer to the
second is "maybe". Certainly the airborne system such as that in A320 aircraft
is presumably considered cost effective, but the cost of designing and buildirg a
commercial recovery blocks computer for software fault tolerance for a large ATC
system is still an uncertainty and is a topic which the proposed ESPRIT work
mentioned in chapter 8, if accepted, will address.

7.1 Recovery Blocks

Accepting that increased reliabilty is possible, it is important to have some
indication of where in an ATC system software fault tolerance might be most
effective. The study on the applicability of software fault tolerance to LATCC
[24] used two guide lines in deciding where alternate software modules might be
beneficial.

1. Provide alternate(s) for a module with complex processing.

2. Provide alternate(s) for processes involved in updating significantly large
parts of the data base.

Two further guidelines were used in determing what type of alternates
should be employed.

3. Use full function (not degraded) alternates where high integrity data flow
occurs.

4. Use degraded alternate where low integity data flow occurs.

Use of these guide lines in the LATCC study resulted in degraded
alternates being provide'd for the complex tracking algorithms because radar
target plots are continually being updated. Full function alternates were
provided for updating the radar database because of the critical nature of the
flight plan related parts. Although not investigated during the study, an analysis
of the LATCC Flight Plan processing system using these guidelines would
probably result in more full function alternates due high integrity required of the
flight plan data.

As well as benefits to ATC system development, software fault tolerance
could also aid software maintenance. For instance, the cost-effectiveness of
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software maintenance could be enhanced both by explicitly exploiting the
mechanisms of the recovery block technique and implicitly through the strong
structuring placed on the software design. New versions of software modules

could be introduced as the primary alternates, with the older trusted versions
acting as standby alternates. Error detection would result in data base recovery
and the system would resume operation with the well tried software. The
recovery mechanisms could also prove beneficial in protecting the operational
system against design faults when adding new functions, for example by
including watchdog timers and integrity checks on critical parts of the database
in the acceptance tests.

The effectiveness of the recover blocks techniques in ATC system will be
very dependent the designers ability to develop highly reliable acceptance tests
used in the error detection preceding recovery. Such tests have been difficult to
devise in both in the LATCC study and the Naval command and control
simulation 13]. Many of the acceptance tests in the LATCC study were
effectively data type checks and a language such as Ada with its exception
handling would be of enormous benefit. However the conceptual simularity
between a highly reliable acceptance test and the pre and post conditions of a
formal specification suggests more fundamental approach would be through the
use of the techniques employed in formal specification languages.

7.2 N-version

The discussion above has concentrated on the use of the recovery block
technique. It is pertinent to ask about the use of other schemes such as n-version
programming. For instance, it would seem possible to replace the the recovery
blocks of the LATCC design with n-version programs, and a few preliminary
thoughts are recorded here to indicate a few of the problems areas. Each
recovery block could become an n-version program, with each alternate,
including the primary, becoming a version and the acceptance test being replaced
by a voter. Clearly, an additional version is likely to be required for each
recovery block with only two alternates: majority voting on two versions is
unsatisatisfactory since it provides only error detection and error recovery is
needed to mask faults. Voting will frequently involve inexact comparisons; for
example a target's position and velocity coordinates will be slightly different
from one version of tracking to another. If one version employed a full Kalman
filter and another relied on dead reckoning, as occurs in the recovery block
LATCC design, then reconcilliation may be difficult. Even if reconcilliation is
possible, the system database will only want one set of values. Will a straight
averaging of the coordinates be sufficient, or will a weighted average be necessary,
or will the resuts from one of the version be acceptable? A related problem is
"Do versions maintain there own independent track tables?". Tnis covers but a
few problem areas that could, with benefit, be addressed in a future study.
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8 SUMMARY and CONCLUSIONS

Experiments have confirmed that software fault tolerance can significantly
increase the reliability of software systems, but the gains will not be as large as
those predicted on the assumption that the software components, developed

independently to the same specification, fail independently. The research work
suggests that an increase in reliability of least an order of magnitude should be
attainable for perhaps less than double the software cost: a satisfactory relation
between reliabilty and cost has yet to be established.

Software fault tolerance is considered to have little capability against
requirement specification errors, yet interestingly, the residual faults detected in
the back-to-back testing in the nuclear industry's PODS experiment [5] were all
traced back to specification errors. It has also been argued that back-to-back
testing reduces the debugging costs per software version sufficiently to make the
use of dissimilar software in flight control systems a competitive solution. This
argument has been followed up with one which seems to imply the use of diverse
software should permit the safety-critical rating of software to be lowered [181:
this should be of great concern to the certification bodies.

While failure independence remains the major problem area in software
fault tolerance there still remain difficulties with the voting system in N-version
programming and the acceptance tests in the recovery block scheme. Voting
systems are not always of the simple comparison type; for example they may
have to compare for equality in data items whose values have only been
calculated approximately, or they may have to handle multiple correct solutions
such as in travelling salesman type problems. Acceptance tests in the recovery
block systems present difficulties of concept since originally they were thought of

as simple tests just to check that results were 'acceptable', but checking for
'correctness' and hence the functionality features in current thinking: many of
the acceptance tests in the LATCC system design 1241 were of the former kind
which would be implicit in the type checking of an Ada-like language. One
interesting route to devising 'correctness' tests is through the constructs of
formal specification languages. It would be a valuable exercise to recast the
LATCC recovery block design into one employing n-version programming,
investigating the problems related to voting in an ATC application and assessing
how n-version progamming should be structured in a large system.

Variations on the basic N-version programming have been applied
successfully in operational systems, although the A320 is possibly the only
system which will tolerate software faults without manual intervention.
Application of recovery blocks awaits the development of a suitable reliable
hardware supported recoverable machine. An ESPRIT proposal from MARl as
prime contractor to build a recovery blocks demonstrator with ATC application
has been made (April 88); the CAA would be one of the participants.

From a maintenance point of view, the recovery block scheme has the
attractive feature that modified software could be introduced into an operational
system with the knowledge that an acceptance test failure would result in
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recovery of the database and automatic resumption of service with an existing
proven version. How such recovery operates in a distributed system needs
investigating.
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